If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+x-4=0
a = 15; b = 1; c = -4;
Δ = b2-4ac
Δ = 12-4·15·(-4)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{241}}{2*15}=\frac{-1-\sqrt{241}}{30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{241}}{2*15}=\frac{-1+\sqrt{241}}{30} $
| (x^2-x-56)/(x^2-16x+64)=0 | | 7x+24=45 | | (7x+1)x2+100=-x²+57 | | 15x+7=9x+25 | | X3-5x2+4x+1=0 | | 2.1x+39.4=1.4-7.4x | | Y=2x-90 | | 3x=10=-17 | | 5+2p-4=8p+6-5p | | 13x=11-2x | | 3(u-2)+1=4/4 | | 6m+9=27m= | | 42×x=x×42=42 | | 3j+6=-12 | | 8x+14=10x+3 | | 3/2+5/2x=7/2 | | 7+15x-5=8x+54-6x | | 4t+14=1.2t=7 | | (n+6)(n+6-12)=64 | | -10x-23=-203 | | (2x+5)/4+(2x+5)/3=3 | | 3(x-1)-5(x-4)=8 | | 9/4=3w | | χ²+5x=24 | | 31+2x=65 | | 6x^2-24x+35=0 | | -2x^2=-41 | | 7.8−3.5t=1.5 | | 2/7x+3/4=3/7x-6/7 | | -x^2=-142+2x | | x^2=-20-x | | 18+18+x=x |